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Backbends in Directed Percolation

When directed percolation in a bond percolation process does not occur, any
path to infinity on the open bonds will zigzag back and forth through the lat-
tice. Backbends are the portions of the zigzags that go against the percolation
direction. They are important in the physical problem of particle transport in
random media in the presence of a field, as they act to limit particle flow
through the medium. The critical probability for percolation along directed
paths with backbends no longer than a given length n is defined as />„. We prove
that ( />„) is strictly decreasing and converges to the critical probability for
undirected percolation pc. We also investigate some variants of the basic model,
such as by replacing the standard ^/-dimensional cubic lattice with a ( d — \ ) -
dimensional slab or with a Bethe lattice; and we discuss the mathematical conse-
quences of alternative ways to formalize the physical concepts of "percolation"
and "backbend."

1. INTRODUCTION

In this paper we discuss an extension of the concept of directed percolation.
The physical motivation for this topic comes from the problem of particle
transport in random media in the presence of a field, as studied by
Ramaswamy and Barma in refs. 11 and 2, and we begin by briefly describing
this process. The model chosen by Ramaswamy and Barma is as follows.
For a random medium take the (unique) infinite open cluster under super-
critical independent bond percolation on (Zrf, E), where CLd,E) denotes
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the ^-dimensional cubic lattice with undirected nearest-neighbour bonds.
Motion of particles under the action of a field in direction e = (1,1,... 1) e Zrf

is described by biased random walks on the random cluster, with hard-core
exclusion between particles. Biased means that a step from x to y (with
xy e E) receives greater weight when y • e > x • e.

Let us define a path in Zrf to be a finite or infinite sequence of distinct
vertices x0, x1,x2v.., (xf c)eZdsuch that x0x1( x^,..., (\k_i\k)eE. Note
that we assume paths to be self-avoiding; we shall not exclude the
possibility k = 0, that is, a path may have length 0. The path is said to be
directed if
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Let d ̂  2 be fixed. Write a configuration of open and closed edges in E as
o>l e£, = (open, closed}£ and write Pp for the percolation measure on Ql

with parameter pe[Q, 1], Let C (respectively C0) be the random set of
vertices xeZr f for which there is an open (directed) path from 0 to x, and
let

The requirement p > pc is essential for Ramaswamy and Barma's
process because for p < pc there is a.s. no infinite cluster and therefore no
concept of a flow of particles. On the other hand when p > p0 we expect a.s.
a large net flow of particles through the infinite directed cluster. More
interesting is the regime pc<p<p0. Ramaswamy and Barma show that
in this case particles tend to flow through the medium along the least
tortuous infinite path, it being physically harder for particles to follow
paths which have long "backbends" against the direction of the field.

Formally, for 0 ̂  n < oo we say a path x0, xlv.., (\k) is an n-path if for
every i and./ with 0 < / < j (<&) we have xy- e ^ x, • e — « (that is, "the path
never retreats further than n units back from its record level," or, "there is
no backbend of size greater than «"), and we let Cn be the random set of
vertices x e Zrf for which there is an open n-path from 0 to x. (The reader
should satisfy herself that for n = 0 this is in accordance with the definition
given above for directed percolation.) The Cn define a sequence of critical
probabilities pn in analogy with p0 above. Since every «-path is an (« + 1 )-
path, we have



thus the regime ( p c , />0] is divided up into sub-regimes. The thesis of
Ramaswamy and Barma is that their process actually exhibits a phase
transition at each of the points pn, and the net flow through the percolation
cluster at parameter p is determined by which sub-regime p belongs to.

Leaving aside its physical origins, a study of the sequence (pn) is an
interesting problem in directed percolation theory. The main goal of this
paper is to prove rigorously the following intuitively appealing theorem
which is implicit in Ramaswamy and Barma's physics.

Theorem 1. For (pn) defined as above, we have

Theorem 1 will be proved in Sections 4 and 5 below. We dedicate
Sections 2, 3 and 6 to discussing some variants of the above model.

2. EXTENSIONS

In this section we decribe some extensions and variants of the model
presented above.

One way of varying the model is to change the underlying lattice. It
is possible to define a version of the model on a Bethe lattice, and here, in
addition to proving a result corresponding to Theorem 1, we can find exact
values for the sequence of critical points—details are in Section 3.

Another interesting possibility is to replace the lattice by a ( d — \ ) -
dimensional slab. For integers / < r let

and (for r ^ O ) let C'n be the random set of vertices xeS(— n; r) for which
there is an open n-path in S(— n; r) from 0 to x. These sets define critical
probabilities/?^, that is,

and we believe it to be the case that
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for all n ^ 0. Unfortunately we have been unable to prove the strict
inequality in (4) in full generality. The weaker statement below is proved
in Section 6.



Proposition 2. The following hold for (prn) defined as above.

(a) In dimensions 2 and 3, p° is strictly greater than pl.

(b) For all dimensions d^ 2 and all n ̂  1, p"n is constant in r.

An important consequence of (4) is that lim,..,^ prn> pn: this implies that
any computer simulation of the model, due to its inherent finiteness, will
not be able to provide any reasonable approximation of the n-path model
on the entire space.

Next, we consider an alternative way of defining percolation in our
model. Note that by straightforward diagonal and stationarity arguments,
P( | Cn | = oo) > 0 if and only if there exists almost surely an infinite open
w-path in the lattice. Let &„ be the event that there exists an infinite open
«-path that goes with the field, where we say that an infinite path x0, xlv..
goes with the field if sup,-(x,- • e) = oo. (Of course Pp(<$n) equals zero or one
by Kolmogorov's Zero-One Law.) It would perhaps be more natural from
a physics point of view to define the critical probabilities (pn) in terms of
the events <Sn rather than (| Cn \ = oo). In fact, it makes no difference which
events we work with, as shown by the following proposition, also proved
in Section 6.
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Proposition 3. For any p e [0, 1 ] and n ̂  0,

We turn now to an alternative formalisation of the idea of backbends.
We shall say a path x0, Xj, x2,..., (xk) is an n-walk if there is no i such that

or equivalently, if for every / with 0</ (and i + n + l^k) we have
Ki+n + i-e^x,-e — n + l (in other words, "the path never makes more than
n consecutive backward steps"). Note that every n-path is also a n-walk,
but that the two notions are equivalent only for n equal to 0 or 1 (see
Fig. 1). Our reason for introducing an alternative here is that the physics
literature is not consistent on this point and Ramaswamy and Barma seem
to use the two forms interchangeably. Fortunately, most of our results do
remain true under the alternative formalisation. Let C„,/)„,$„ be the
n-walk versions of Cn, pn, &„ defined above. In the Bethe lattice set-up, the
versions of pn can be computed exactly, in a similar way to the (pn), and
details of this are also given in Section 3. On the cubic lattice Theorem 1
continues to hold when tildes are added: the proof of (2) is similar to that
given below for the «-path, so we shall omit it; and for the limit (3) there
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is in fact nothing further to prove, since every n-path is also an n-walk and
therefore pn < />„ for all n ^ 1. A bigger surprise is in store for us in the case
of percolation on slabs (Section 6), where there is qualitatively different
behaviour in the n-walk set-up. (4) becomes

Proposition 4. Defining the critical probabilities prn in the natural
way, we have

The following problems about n-walk percolation are still open:

1. Does lira*/>* = /?„?

2. Prove or disprove a version of Proposition 3 for n-walks, that is,
that there exists a.s. an infinite open n-walk going with the field if
and only if Pp(\Cn\ = oo) >0.

Finally, we consider the following generalization of the definition of
n-path. Let a: N -» N, and call a path x0, x,,..., (x^) a a-path if for every i
and7' with 0 < i < j (^k) we have x7 • O x; • e — a(x, • e). Thus if a path has
reached a level « (that is, x, • e = n), it is allowed a backbend of length a(n).
We can define the critical probability p(a) as

Fig. 1. This path is a 2-walk and a 3-path, but not a 2-path.

for all n ̂  2 and in all dimensions d ̂  3.



894 Roy et al.

where Ca is the random set of vertices x E Z'' for which there is an open
cr-path from 0 to x. Note that for a(n) = k (a constant) we are in the
A>backbend model, with p(a] = pk, while if a(n) = n we are in the situation
of undirected bond percolation in the half space and p(a) = pt.. For general a,
it is an easy consequence of Theorem 1 that lim,,^^ a(n) = oo implies
P(n) = Pc- An interesting question is now: how does the percolation model
behave with different functions <r? In particular, given that directed per-
colation and undirected percolation are believed to belong to two different
universality classes, it would be interesting to investigate the dependence
on a of various critical exponents.

3. BETHE LATTICE

The notion of backbends extends very naturally to a Bethe lattice set-
ting. Using a multi-type branching process argument, we show that the
critical probabilities in this setting can be expressed simply in terms of
eigenvalues of certain matrices, and so percolation-theoretical questions
reduce to problems of matrix manipulation. Exact values of the critical
probabilities can then by worked out with the help of the computer. This
situation is in contrast to the cubic lattice model, where we must recourse
to hard arguments of probability theory to prove our results, and exact
values are beyond our reach.

We restrict ourselves to considering the rooted Bethe lattice with coor-
dination number 4. Our arguments are applicable to Bethe lattices of
arbitrary coordination number, but the attraction of this particular one is
that it is easily represented diagrammatically (see Fig. 2) in such a way as
to point the analogy between it and the Z2 square lattice, with all bonds
lying either "North/South" or "East/West," and a field being thought of as
acting in the "north-easterly" direction.

In analogy with the quantity x • e defined in the previous section, we
define the depth rj(v) of a vertex v in the Bethe lattice recursively as follows.

Fig. 2. Part of the rooted Bethe lattice with coordination number 4.



As is customary, we impose a probability structure on the lattice by
declaring an edge open with probability p and closed with probability 1 — p
independently of all other edges; (C'n) and (C'n) are the sets of vertices v
such that the unique path from 0 to v is an open «-path (n-walk); and (p'n),
(p'n) are defined in the usual way.

Suppose we now consider C'n as the set of individuals of a multi-type
branching process, with 0 the progenitor, and the children of an individual
M e £'„ being those v e £'„ such that uv is the last edge in the unique open
path from 0 to v. The progenitor 0 is of type 0, and if a parent u is of type
t then its children to the South and West are of type t + 1 and its children
to the North and East of type 0. Then it is a consequence of the definition
of an n-walk that no individual can have type t > n, and the expected num-
ber of children of type j from a parent of type ;' (with /, j^n) is given by
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The root 0 has depth ?/(0) = 0, and given a vertex v with depth t](v), its
immediate neighbours to the North and East have depth rj(v) + \ and its
immediate neighbours to the South and West have depth rj(v) — \. Thus for
v as in Fig. 2 we have y(v) = \. We now have a natural formalisation of the
idea of backbends in the Bethe lattice as follows: a path n = v0, i>lv.., (vk)
is defined to be

an n-path if tj(Vj) ^tj(Vi) — n for every i and j with O^i^j(^k);

an n-walk if there is no ;^0 such that t](v,)>r)(v,+ 1)> ••• >
t ) ( v i + n + i ) .

and

The event | C'n \ = co now corresponds to the survival of the multi-type
branching process. But by the Perron-Frobenius Theorem, the offspring
matrix Mnif> has a positive real eigenvalue ~Kntp such that

and it is well-known (see for example ref. 10) that the process will survive
with positive probability if and only if Hnp > 1. Thus,



We can follow a similar approach for «-paths, this time saying that if
a vertex u e C'n is of type t then its children to the South and West are of
type /+ 1 but those to the North and East are of type max{/ — 1,0}. This
again yields labels from 0 to n for every vertex in C'n, but now it is not so
easy to write down an offspring matrix: a vertex of type 1, for example, will
potentially have two children of type 2 if its parent is of type 0, but only
one if its parent is itself of type 2. We get around this by thinking of the
edges between vertices in C'n as the individuals of our new multi-type
branching process, with the type of an edge being a pair of numbers given
by the types of the two vertices it joins (the parent first). Thus an edge can
have either type (0, 0) or type (/', j) for 0 ^ ij^n with i — j \ = 1, and the
offspring matrix is now given by

(where S,j = l{i = j } ) . The same procedure as before yields the values:

We remark that these numerical results are consistent with those obtained
non-rigorously by Barma and Ramaswamy(2).

Finally we give a Bethe lattice version of Theorem 1.

Proposition 5. For (p'n) defined as above, we have

Moreover, these statements remain true if the (p'n) are replaced by (p'n).

Proof. For the same reasons as given in the Zrf case, we shall prove
the statements only for the (p'n): the proof of (5) for «-walks is similar to
that given below, and the limit p'n-> 1/3 is immediate since p'n^p'n for
all «.

Let Xn then be the «-path equivalent of !„ l above, and let gn = gn(A)
be the characteristic equation of Mn > ] , so Xn is the largest real zero ofgn.
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Using MATLAB we obtain the following values (to 4 decimal places from
n = 1 onwards):



We shall show that (AJ is strictly increasing and that A n - > 3 as n-» oo,
Writing out gn as a determinant we obtain after some algebraic manipulation
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for « ^ 3. This allows us to express gn — 4gn_, as a telescopic sum yielding

Since every rc-path is also an (n + l)-path, (p'n) is nonincreasing and thus
(AJ is nondecreasing. Suppose now that kN = XN+\ for some N. Then (6)
implies that A.N is an eigenvalue of Mn, for all n. By inspection of Mn>1 for
a few small values of n we see that such a common eigenvalue does not
exist; hence, (AJ is strictly increasing.

To prove the limit An -> 3 note that since the row sums of MHil all
equal either 1 or 3, we have AB e [ 1, 3] for all n. But for A e ( 1 , 3) the poly-
nomial equation associated with (6)

has complex roots and so (6) has general solution of the form

where A, r, 0 and a are functions of A e ( l , 3 ) . Given any e>0, it is
straightforward to check that these functions are continuous and that 8
is not constant on the interval (3 —e, 3); and hence, for n large enough,
gn has a zero in this interval.

4. THE LIMIT

In this section we prove (3) that the critical probabilities for n-path
percolation converge to that for undirected bond percolation, i.e.,
limn-oo Pn = Pc- We shall give two distinct proofs for the separate cases
d ^3 and d = 2. In the latter case we shall use a strictly two-dimensional
argument involving box crossings. In the former case we apply a result of
Grimmett and Marstrand that holds only in dimensions 3 or above.

Firstly then, suppose d ^ 3. Since every undirected path in the slab
S(-n(d+2)',n(d + 2)) is a 2n(J + 2)-walk, we have



where pc(U) denotes the critical probability of undirected bond percolation
restricted to a set U a Z^. Let

Fig. 3. Part of the set F (in the case d = 3) seen in projection on the plane x-e = 0. The
standard basis of coordinate vectors is shown in bold.
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and note that S(-n(d + 2)\n(d + 2))=>2nF+B(n), hence,

Now from (1) and (8) it suffices to prove

But, as remarked in Stacey"21, the sub-lattice generated by Fis isomorphic
to the two-dimensional hexagonal lattice (see Fig. 3). In particular, by
Wierman"31, pf(F) = 1 -2 sin(7r/18)< 1 and so (9) follows by the
Grimmett-Marstrand Theorem for bond percolation (Theorem 7.8 of
Grimmett(7>), given below as Theorem 6.

Theorem 6. If F is an infinite connected subset of Zrf with
pc(F)<l, then lim^^ pc(2nF+B(n)) = pc.

Let us now turn to the case d = 2.
For O^q^l, we call a probability measure on Qt {-dependent with

parameter q if it is such that each edge xlx2eE is open with probability
q and if this is independent of the status of any edge \3x4eE whenever
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x,, x2, x3, x4 are all distinct. The following proposition concerning directed
percolation in 1-dependent models can be proved by an elementary con-
tour argument analogous to that in Durrett'31, §10 (or directly from a
general result by Liggett et a/.(8)).

Proposition 7. There exists q0<\ such that yu(|C0| = oo)>0 for
every 1-dependent measure fj. with parameter q>q0.

A top-bottom crossing of a box [a, ft] x [c, d~\ c Z2 is a (undirected)
path in the box from [a, b~\x {c} to [a, b~\y.{d}; a left-right crossing is
defined similarly. Let s4n be the event that there is an open top-bottom
crossing of [ — n,«] x [ — n, 5«] as well as an open left-right crossing of
(0, 4n) + B(n) (see Fig. 4).

Fix p> pc. By a standard argument we have Pp($/n) -» 1 as n -> oo (see
for example the proof of Theorem 9.23 in Grimmett16'). Choose n with
P/,(Xi) > <7o- We shall show by a renormalisation technique that this choice
of n satisfies p> pSn, and (3) then follows since our choice of p>pc is
arbitrary.

Fig. 4. An occurrence of the event Xr
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Fig. 5. Part of the grid made up of In x 6« boxes (dotted lines): the curves (in bold) repre-
sent open paths in the lattice E. The box on the left and the two boxes along the top of the
figure are "good".

As shown in Fig. 5, we form a cris-cross grid in E using infinitely many
In x 6« boxes, and say that a box is good if a suitable version of stfn occurs
within it. Note that the status of two different boxes is independent if and
only if the boxes do not overlap. Thus we can think of the grid G of good
and bad boxes as a 1-dependent bond percolation model, with parameter
Pp(jtfn)>q0. Hence |C0| = 00 in G with positive probability; as remarked
previously, this is equivalent to the a.s. existence of an open infinite directed
path in G.

Now suppose yi ,y 2 , . . . is an infinite open path in G, that is, ( y iy 2 ) ,
(y2y3),... denotes a sequence of good boxes in the grid with ( y / _ i y / ) n
( y / y / + i ) ^ 0 f°r aH '^2. By suitably concatenating box crossings we can
find a corresponding infinite open path x,, x2... in E such that for all i<j
there exist k^l with \/e(ykyk+]) and x y e(y /y / + 1 ) . Since

max ( x - e - x ' ' C ) = 8«
x, x' e Q

for any box Q in the grid, it follows that x,, x2... is an 8n-path in E if
y,, y2)... is a directed path in G. Thus to every infinite open directed path
in G there corresponds an infinite open 8n-path in E, and so the previous
paragraph implies that C8n is infinite in E with positive probability, as
required.

5. STRICT MOIMOTONICITY

To prove (2), we begin be introducing some notation to see that back-
bend models can be viewed as "enhancements" in the sense of Aizenman
and Grimmett"1 and Menshikov.(9> It then remains to check how general
enhancement techniques can be applied in our specific model.



Label each edge in E (independently of the other edges and of the
open/closed configuration) "special" with probability .? and "dull" with
probability \—s, and write Q2= {special, dull}E. We write the enhanced
configuration as (col, a>2)eQl xQ2 and denote the measure on i2,x£?2

by PptS. Expectation with respect to P^ will be denoted by Ep>J.
Given a path x0, x,, x2,... (\k) we say it is an n*-path if it is an «-path

and if the edge x/_,x, is special whenever x / - e = x , - -e — n (for 0^i<j
( ^ k ) ) . We write C* for the random set of vertices \eZd for which there
is an open «*-path from 0 to x. Note:
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When i = 0, almost surely no edges are special and so an «*-path
is the same as an (n— l)-path, thus

When s=l, almost surely all edges are special and so every «-path
is an n*-path, thus

By the latter remark, it is sufficient for (2) to prove that for each finite
n ^ 1 there exists p<pn_\ such that

Fix «^1; for R^n + \ let

(see Fig. 6). Given C/c Zd we define dU to be the set of vertices x e U such
that \yeE for some y$ U; let JfR be the event that there is an open
M*-path from 0 to some vertex of d(H(R)).

For any R^n+\, any edge/e.E, and any configuration (w 1 ,a» 2 )e
Qlx&2, we say that / is pivotal (respectively if-pivotal) for NR if the
configuration obtained from (a*,, a»2) by setting/to be open (resp. special)
is in J#~R, but the configuration obtained by setting / to be closed (resp.
dull) is not in 3CR. Let NR denote the (random) number of pivotal edges
for the event J^R, and similarly let N% be the number of *-pivotal edges
for JiTR.

The following lemma is analogous to Lemma 2 of Aizenman and
Grimmett(1).



Lemma 8. There exists a strictly positive continuous function
g = g(pt s) on (0, 1 )2 such that
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for all R^n+\.

It follows by a version of Russo's formula (Lemma 1 of Aizenman and
Grimmett(l)) that

and the proof of (10) is completed by elementary differential calculus (as
detailed in Aizenman and Grimmett).

For the proof of Lemma 8 we shall assume that d and n are fixed with
d=2 and n>3. Proofs for higher dimensions and/or lower values of n are
similar.

As a preliminary we first need some more notation.
Given C/cZ2 and/e£ we shall say that/is incident with U if/n U

is nonempty; we define the interior of U by int(J7) = U\dU. Let G be the
group of Z2 actions generated by all translations on Z2 together with the
map (x1, x2)\~*(x1, x1); for 6eG we shall write U0 for the image of U
under d.

Let S, T be the sets

and let ylty2, y^ be paths in S from T to (1,0) given by:

(see Fig. 6).

Proof of Lemma 8. Fix R^n + l. Given an edge / = xy with
x, yeH(R), let nf be the number of edges incident with/ + J?(«) that are
*-pivotal for Jf!"R, Suppose (o>l, u>2) is a configuration for which/is pivotal
for JfR but nf= 0. The main idea of the proof is to find a way of modifying
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Fig. 6. H(R) and S when n = 5, R = 14 and d=2. In the detail (bottom left) the paths y,
}»2 and y3 in S are marked (1) , (2), (3) respectively.
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this configuration by changing the status of some of the edges in/ + #(«),
in such a way that Uf becomes strictly positive. It will follow, as in
Lemma 2 of Aizenman and Grimmett, that the mean numbers of pivotal
and * -pivotal edges are comparable, uniformly in R.

Finding a suitable modification of (cal,ca2) is a question of working
through some elementary graph theory. Note that by the definition of an
«-path we must have

min{x'e, y -e} 5* —n

Therefore it follows from the geometry of HR that there is some 6 e G such
that \,yeS0c:HK,fis incident with TB, and 0£int(S8). (Without loss of
generality suppose xe Te.) By choice of/and (cat, a>2),f'\s in some «-path
n from 0 to dH(R) such that n is open in the configuration obtained from
(ca i, ct}2) by setting/itself to be open. Let s be the first point of n in Se and
t be the last. Since x, y e S° it follows that s and t are distinct elements of
dSe. Let HI, n3 denote the (possibly empty) sub-paths of n from 0 to s and
from t to dH(R). Write nl = x0, xlv.., \k (where x0 = 0, xfc = s, k^O).

We shall find a path 7c2 = \k,xk + i,...,\i in Se from s to t (where
x, = t, k < I) so that the concatenation p of nlt n2, rc3 is an n-path from 0
to dH(R), and so that x, • e = xy • e — n holds for some /, j with 0 ̂  j< i and
&<; '</ . If we now modify the configuration (u>[, co2) by making the edges
of p incident with Se open and special, and all other edges incident with
S6 closed and dull, then p must become the only open n-path from 0 to
dH(R); and the edge x,_!X,- becomes *-pivotal for 3fR. This shows that we
can modify the configuration (o)1,w2) within the box f + B(n) in such a
way that Uf become non-zero. Since the size otf + B(n) is finite and inde-
pendent of both R and /, it follows that there is a finite, positive, con-
tinuous function <5 on (0, 1 )2, independent of R and of/ such that
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Thus

Summing now over all such edges/ = xy with x, y e H ( R ) ,

and the lemma follows.



It remains to be shown how we choose the path n2. Now there exists
a path from s to T° in d.SAIt}; and this can be concatenated with exactly
one of the paths y", y", y" from T° to (1, 0)". Denote the resulting path
x'2 = \'k, \'k +1,..., x'm, where \'k = \k = s,\'m = (\, 0)", m>k.

We shall call a vertex \'r of n'2 marginal if x ) . - e ^ x , - e —« for some
/ = i(r) <r. (Note that here we are abusing notation slightly and taking x,
to mean x'f when i^k).

By construction, \'m_,,eT" and x'm_n-e — x'm-e = n, so certainly x^,, is
marginal. On the other hand, for (to,, a>2) the edge xk_, xk (if it is defined)
is supposed not to be *-pivotal for JfR, therefore \k is not marginal.

Choose r minimal such that \'r is a marginal vertex in n'2. The above
discussion shows that r is well-defined and greater than k. By minimality
it is easy to see that i = i(r) satisfies
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and that x'r • e > xh • e — n for all h ^ r, thus x0, x,,..., \'r_ ,, x'r is an n-path.
At this point let us put an end to all abusive notation and declare

\k,..., x r _ , to equal x^.,..., x ' r _ , . Now we claim that

If / < k then this is clear from (11) since x, and t both lie on the n-path n.
For the case ; > k, we note that x, • e ^ x • e and that x and t both lie on n,
then apply a similar argument. Because of (12) and our construction of
\k,..., xr_ |, it is possible to extend this path to 7t2 = \k, xk + l,..., \/ from s
to t (in 5") such that minr<7< /(x7-e) = x', •€; and n2 has the properties we
required. (See Fig. 7 for some examples.) |

Fig. 7. Some possible configurations of /; through the set S".



6. SLABS

In this section we discuss the critical probabilities for percolation on
slabs, p'n and prn, and we show how these can be used to prove Proposi-
tion 3. For much of the section we shall use the equivalent formalisation of
percolation discussed in Section 2, namely the a.s. existence of an open
path in the lattice.

Proof of Proposition 2. (a) We shall in fact prove that in dimensions
2 and 3, p°{> p0; this is a stronger result by (1). When d = 1 the argument
is trivial (and can easily be extended to arbitrary values of «): here, the slab
S( — 1;0) is simply a one-dimensional line, and so p° = pc(\) = l; on the
other hand it is well known (see e.g. Durrett(4)) that p0(2)<\. When
d=3, S( —1;0) is the two-dimensional hexagonal lattice and so p° =
1 —2 sin(7t/18) (see Section 4 above), and the result follows by the upper
bound />0(3) < 0.473 of Stacey<12).

(b) Fix d^2 and n ^ 1. Clearly, prn is monotonically decreasing in r;
suppose it is not monotonically increasing. Then p° ^ p'~l > p > p'n for
some p e [0, 1 ] and r ^ 1. It follows that there exists almost surely an open
inf in i te  «-pa th  tha t  i s  wi th in  S(—n;r )  bu t  no t  wi th in  S(—n;r—l) .  Any
such path must include a vertex z with z • e = r, the path from z onward
then being contained in S(r — n; r). Thus we have almost surely an infinite
open «-path in S(r — n;r). By stationarity it follows that/>^/>°, which is
a contradiction.

Proposition 3 can now be proved as follows.

Proof of Proposition 3. Fix p e [0, 1 ] and n ̂  0. Since every infinite
n-path either goes with the field or is contained in some slab S(l; r), it is
sufficient to prove that if there exists a.s. an open infinite «-path contained
in some slab then P(<fJ = 1. So suppose such an «-path exists a.s. By (the
proof of) Proposition 2(b) it follows that S(-n;Q) contains an infinite
«-path a.s. In particular, S(—n; 0) contains an infinite cluster a.s. (i.e.,
the random subgraph of (Zd,E) formed by all open edges x, y with
x, y eS(—n; 0) has an infinite connected component almost surely); by
Theorem 1' of Gandolfi et al.(5\ the infinite cluster is a.s. unique. By count-
able additivity therefore, a.s. each of the sets S(n(i— 1); ni) contains a
unique infinite cluster Kt (for / = 0, 1, 2,...). On this event, any given z with
z • e = ni lies in Kt n Ki+1 with positive probability, so there exists a.s. some
sequence z0,zlv.. with z,,eKtn K,,+j. Now z,-, z,.+ , eKl+l implies that
there is an open path from z, to z / + 1 in S(ni; n(i+ 1)); by construction of
S(ni;«(/+!)) such a path must be an «-path; and the concatenation of all
these n-paths goes with the field.
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We conclude with a brief discussion of n-walks on slabs. The proof of
Proposition 4 is similar to that of (2) in Section 5, so we shall just give a
sketch here.

F ix  n^2  and  r^ l ,  and  assume d^3 .  We want  to  show tha t
prn~l > prn. First note that the assumption on d is made because we have
0 < prn~l < 1 if and only if d"^ 3, and these strict inequalities are necessary
in order to be able to apply the usual enhancement techniques. We now
introduce the customary new variable se[Q, 1], declaring all edges in
S(r— 1; r) to be open with probability ps and all other edges open with
probability p (independently), thus
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and

We define a sequence of boxes H'(R) with (J ff'(R) = S( -n; r) and let jf^
be the event that Crn\H'(R) is nonempty. As usual the important point
now is to show that if/is an edge in S( —n;r— 1) and co is a configuration
for which / is pivotal for 3C'R, then we can find a modification of o> of
"bounded cost" for which some edge in S ( r — \ ; r ) and near / becomes
pivotal for 3C'R. This is done in a similar way to Section 5, by diverting an
n-walk through / so that it must go to S ( r — l ; r ) and then back to its
original course—making sure that on its return journey from S ( r — \ ; r ) it
never makes more than n backward steps consecutively, and thus remains
an «-walk. Note that here we use a crucial property of «-walks for n^2,
that they can go arbitrarily far against the field, that is, given any « ̂  2 and
m ^ 1 we can find an n-walk x0, Xj,... , x^ with x0 • e — xk • e = m. This is in
contrast to n-paths (and also 0-walks and 1-walks) where we must by
definition have \0-e — \k-e^in.
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